Principles of External Fixation

AOTrauma Course
Basic Principles of Fracture Management for ORP

Pongpol Petchkum
Orthopaedic Department
Bhumibol Adulyadej Hospital
COURTESY RAHAT JARAYABHAN
Overview

• Basic knowledge about external fixator
 • Principles
 • Indications
 • Advantages/disadvantages
• Mechanics
• Complications
• Case examples
External Fixation

• Is a method of bony fixation outside the skin
• Is another method of “Relative stability”
• Bone and Soft tissue are stabilized at a distance
Indirect Bone Healing

Principle of External Fixation

Extramedullary Splinting

Relative stability

Indirect Bone Healing Callus
Pins = Screws
Clamps = Locking head
Rod = Plate
Indications

- Fractures & soft tissue care
 - Open fractures
 - Peri-articular fractures
 - Pediatric fractures
 - Definite treatment
- Multi-trauma
 - Damage control
 - Pelvic ring injury
 - Long bone fracture temporization
- Deformity Correction
 - Malunion/nonunion
 - Arthrodesis
 - Limb length
- Infection
 - Osteomyelitis
Advantages

- Minimally invasive
- Flexibility (build to fit)
- Quick application
- Useful both as a temporizing or definitive stabilization device
- Reconstructive and salvage applications
Disadvantages

- Mechanical
 - Inadequate immobilization
 - Pin-bone interface failure
 - Deformity
 - Patient compliance
- Biologic
 - Infection (pin track)
 - Neurovascular injury
 - Soft tissue contracture
Components of the Ex-fix

- Pins
- Clamps
- Connecting rods/ring
Pins

- Diameter?
- Threaded?
 - Length
 - Design
 - Radial preload
 - Self drilling
- Stress riser
Pins

- Principle: The pin is the critical link between the bone and the frame
 - Pin diameter
 - 3-5mm
 - Pin thread design
 - Pre-drilled vs self-drilling
 - Straight vs conical
 - Material
 - Stainless Steel
 - Titanium

< 1/3 dia
Clamps

• Two general varieties:
 • Pin to bar clamps
 • Bar to bar clamps

• Principles
 • Must securely hold the frame to the pin
 • Clamps placed closer to bone increases the rigidity of the entire fixator
Connecting rods and/or Frames

- Principle: increased diameter = increased rigidity and strength
Frame types

- Uniplanar
- Biplanar
- Circular (Ring Fixator)
 - Half-pins vs. transfixion wires
- Hybrid
Ring Fixators

• Principles:
 • Excellent bending and torsion stiffness
 • Multiple tensioned thin wires (90-130 kg)
 • Place wires as close to 90° to each other
 • Use full rings (more difficult to deform)

• Can maintain purchase in metaphyseal bone
• Allows dynamic loading
• May allow joint motion
Hybrid fixators

• Combine the advantages of ring fixators in periarticular areas with that of half pin fixators in diaphyseal bone
Fixator Mechanics: Pin Factors

- Larger pin diameter
- Increased pin spread
 - on the same side of the fracture
- Increased number of pins (both in and out of plane of construct)
Fixator Mechanics: Rod Factors

- Frames placed in the same plane as the applied load
- Decreased distance from bars to bone
- Double-stacking of bars
Frame Mechanics: Biplanar Construct

- Linkage between frames in perpendicular planes (DELTA)
Fixator Mechanics: Optimal frame construction

- a) Pins are placed widely separated in each main fracture fragment.
- b) Pins are preloaded.
- c) Tubes are connected to the pins close to the bone.
- d) Two tubes are utilized. However for purpose of this spanning external fixator this is rarely needed.
Safe Zone for pin placements

- Avoid
 - Nerves
 - Vessels
 - Joint capsules

- Minimize
 - Muscle transfixion
Complications

- Pin-track infection/loosening
- Frame or Pin/Wire Failure
- Malunion
- Non-union
- Soft-tissue impalement
Pin-track infection

• Most common complication
• 0 – 14.2% incidence
• 4 stages:
 • Stage I: Seropurulent Drainage
 • Stage II: Superficial Cellulitis
 • Stage III: Deep Infection
 • Stage IV: Osteomyelitis
Pin-track infection

- Proper pin/wire insertion technique:
 - Subcutaneous bone borders
 - Away from zone of injury
 - Adequate skin incision
 - Prevent soft tissue injury during insertion use “sleeve!”
 - Sharp drill bits and irrigation to prevent thermal necrosis
 - Manual pin insertion
CASE EXAMPLES
Case 25 year-old male, MCA
Debridement & external fixation
Female 83 years, Hit by car fracture pelvis with shock
As a tool for Indirect reduction
Indirect reduction
Summary

- External fixation provides relative stability with little damage to soft tissues or disturbance to blood supply to bone
- Simple, easy, and minimally invasive stabilization
- Understanding instruments, mechanics and frame construct is important
- Clinical applications
 - Damage control
 - Care for soft tissue injury, open fractures
 - Infections
 - Deformity correction, bone lengthening

When all else fails think of external fixator!!!